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Phase-ordering dynamics with an order-parameter-dependent mobility: The large-n limit

C. L. Emmott and A. J. Bray
Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

~Received 27 August 1998!

The effect of an order-parameter-dependent mobility~or kinetic coefficient!, given byl(fW )}(12fW 2)a, on
the phase-ordering dynamics of a system described by ann-component vector order parameter is addressed at
zero temperature in the large-n limit. In this limit the system is exactly soluble for both conserved and
nonconserved order parameter; in the nonconserved case the scaling form for the correlation function and its
Fourier transform, the structure factor, is established, with the characteristic length growing asL;t1/2(11a). In
the conserved case, the structure factor is evaluated and found to exhibit a multiscaling behavior, with two
growing length scales differing by a logarithmic factor:L1;t1/2(21a) andL2;(t/ ln t)1/2(21a).
@S1063-651X~99!07601-1#

PACS number~s!: 64.60.Cn, 82.20.Mj, 05.70.Ln
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I. INTRODUCTION

In this paper we examine the effect of an order-parame
dependent mobility, or kinetic coefficient, on the phas
ordering dynamics of a system described by ann-component
vector order parameter. Both conserved and nonconse
order parameters are considered. For the case of a con
~i.e., order-parameter-independent! mobility/kinetic coeffi-
cient, both these systems become analytically soluble in
large-n limit @1–3#; it is in this limit that we now consider
the effect of an order-parameter-dependent mobility given
l(fW )}(12fW 2)a, for models where the equilibrium orde
parameter satisfiesfW 251. Thus the mobility vanishes in
equilibrium, leading to a reduction in the growth rate of t
characteristic length scale,L(t), of the bulk phases.

The effect of an order-parameter-dependent diffusion
efficient on a system with a scalar order parameter has b
studied by several authors@4–6# since it has been propose
that for a scalar order parameter a mobility of the fo
l(f)5(12f2) is required to accurately model the dynam
ics of deep quenches@7# and the effect of an external fiel
@8#. Lacastaet al. @5# studied this system numerically using
mobility given by l(f)5(12af2). They found that for
a51 the characteristic length grows ast1/4 ~in contrast to the
conventionalt1/3 growth for a50!, and for allaÞ1 there is
a crossover betweenL;t1/4 and L;t1/3. Similar behavior
was observed by Puriet al. @6#. This system has been solve
exactly in the Lifshitz-Slyosov limit@5# for a more genera
mobility given byl(f)5(12f2)a; in this system the sys
tem coarsens with growth exponent 1/(31a), despite the
absence of surface diffusion as a coarsening mechanis
late times~due to the geometry of the system!, and the van-
ishing of the mobility in the bulk phases.

Although a system described by a vector order param
will have a completely different morphology from the sca
case~e.g., there are no localized defects forn.d11!, it is
natural to try to generalize this order-parameter-depend
mobility to the vector case@9#. In this paper, therefore, we
examine~in Secs. II and III! the coarsening dynamics of a
n-component vector order parameter for a general clas
mobilities/kinetic coefficients given byl(fW )5(12fW 2)a,
where aPR1, for both the nonconserved and conserv
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cases. While theseO(n) models are not exactly soluble fo
general n, exact solutions can be obtained in the lim
n→`.

In Sec. II we consider a nonconserved system with a v
tor order parameter. The scaling hypothesis is establis
and the exact forms of the two-time correlation function a
the structure factor are calculated. We find that the cha
teristic length grows asL;t1/2(11a). Due to the absence o
defects there is no Porod’s law: the structure factor is Gau
ian for all a.

In the conserved case~Sec. III!, the structure factor
is found to depend on two characteristic length
L1;t1/2(21a) and L2;(t/ ln t)1/2(21a), through the form
S(k,t);L1

df(kL2) . This type of behavior is termed ‘‘multi-
scaling,’’ and the results forL1 andL2 are generalizations o
similar expressions obtained by Coniglio and Zannetti@1# for
the case of a constant mobility. Indeed, as expected, all
results of this paper reduce to the established constantl re-
sults whena is set to zero.

We conclude with a summary and discussion of the
sults.

II. THE NONCONSERVED O„n… MODEL

The dynamics of a nonconserved vector order param
are described by the phenomenological time-depend
Ginzburg-Landau equation@10#,

]f i

]t
52l~fW 2!

dF@fW #

df i
5l~fW 2!S“2f i2

]V~fW 2!

]f i
D , ~1!

whereV(fW 2) is the potential energy term in the Ginzbur
Landau free-energy functional, and is invariant under glo
rotations offW . In the following calculation, the conventiona
choice is made for the form of the potential:

V~fW 2!5
~12fW 2!2

4
, ~2!

and the order-parameter-dependent kinetic coefficient
given byl(fW )5(12fW 2)a.
213 ©1999 The American Physical Society
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In the limit n→` Eq. ~1! may be simplified by making
the following substitution:

fW 25 lim
n→`

S (
j 51

n

f j
2D 5n^fk

2&5^fW 2&, ~3!

where^ & represents an ensemble average. Defininga(t) by
the equationa(t)5(12^fW 2&), Eq. ~1! then reduces to

]f i

]t
5aa~ t !@“21a~ t !#f i . ~4!

If we now take the Fourier transform, this equation can e
ily be solved to give

fk
~ i !~ t !5fk

~ i !~0!exp@2k2b~ t !1c~ t !#, ~5!

where b(t)5*0
t dt8aa(t8) and c(t)5*0

t dt8a11a(t8). On
substituting Eq.~5! back into the definition ofa(t) we find

a~ t !512D exp@2c~ t !#(
k

exp@22k2b~ t !#, ~6!

where we have used the conventional choice for the in
conditions,

^fk
~ i !f2k8

~ j ! &5S D

n D d i j dkk8 . ~7!

Using the fact that(kexp@22k2b(t)#5@8pb(t)#2d/2 in Eq. ~6!,
we obtain

a~ t !512D@8pb~ t !#2d/2exp@2c~ t !#. ~8!

Since we are mainly interested in late times, we now so
this equation self-consistently to obtain the large-t result for
b(t) and c(t). In order to make progress we make the a
sumption that at late timesa(t)!1, and hence the term o
the left-hand side of Eq.~8! may be neglected. The validit
of this assumption will be proveda posteriori. Thus we wish
to solve

D@8pb~ t !#2d/2 exp@2c~ t !#51. ~9!

Differentiating this expression with respect to time gives
following relation:

ċ~ t !5
dḃ~ t !

4b~ t !
. ~10!

Substituting the derivatives ofb(t) and c(t), which are
given by

ḃ~ t !5aa~ t !, ~11!

ċ~ t !5a11a~ t !, ~12!

into Eq. ~10!, we find that

b~ t !5
d

4a~ t !
. ~13!
s-

l

e

-

e

If we now differentiate again, we obtain a simple different
equation fora(t), and from this we find that the large-t be-
havior of a(t) is given by

a~ t !;S 4~11a!t

d D 21/~11a!

. ~14!

Hence it can clearly be seen that the assumption thata(t)
!1 at late times is justified.

Using this result together with Eqs.~9! and ~13!, we find
that

b~ t !;st1/~11a!, ~15!

c~ t !;
d

4~11a!
lnS t

t0
D , ~16!

where

s5~11a!1/~11a!S d

4D a/~11a!

, ~17!

t05
1

a11 S 4

dD aS D2/d

8p D 11a

. ~18!

We are now in a position to evaluate the expression
the Fourier transform of the order parameter at larget. Sub-
stituting Eqs.~15! and ~16! into Eq. ~5!, we find that

fk
~ i !~ t !5fk

~ i !~0!S t

t0
D d/4~11a!

exp~2sk2t1/~11a!!. ~19!

Using this result, we can evaluate the two-time structure f
tor and the correlation function. These are given by

S~k,t1 ,t2!5~8ps!d/2~ t1t2!d/4~11a!

3exp@2sk2~ t1
1/~11a!1t2

1/~11a!!#, ~20!

C~r ,t1 ,t2!5S 4~ t1t2!1/~11a!

~ t1
1/~11a!1t2

1/~11a!!2D d/4

3expS 2x2

4s~ t1
1/~11a!1t2

1/~11a!! D , ~21!

which, in the equal time case, reduce to the following e
pressions:

S~k,t !5~8ps!d/2td/2~11a!exp~22sk2t1/~11a!!, ~22!

C~r ,t !5expS 2
x2

8st1/~11a!D . ~23!

These results exhibit the expected scaling forms, with
characteristic length scale growing asL;t1/2(11a). The
structure factor has a Gaussian form, without the power-
tail predicted by Porod’s law. This is a direct consequence
the absence of defects in the system.

If we now look at the two-time correlation function in th
limit t1@t2 , we find that
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C~r ,t1 ,t2!5F4S t2

t1
D 1/~11a!Gd/4

expS 2
x2

4st1
1/~11a!D .

~24!

Comparing this with the scaling form@10# C(r ,t1 ,t2)

5(L2 /L1) l̄h(r /L1), we obtain the result,l̄5d/2, indepen-
dent ofa.

It is also interesting to compare the response functi
G(k,t)5^dfk

( i )(t)/dfk
( i )(0)&, with the structure factor

S(k,t,0), i.e., with the correlation offk
( i )(t) with its t50

value. Using Eq.~19! we find that

S~k,t,0!5DS t

t0
D d/4~11a!

exp~2sk2t1/~11a!!, ~25!

G~k,t !5S t

t0
D d/4~11a!

exp~2sk2t1/~11a!!, ~26!

which verifies the relationS(k,t,0)5DG(k,t). Note that this
is an exact result valid beyond the large-n limit; this may be
proved by integration by parts on the Gaussian distribut
for $fk(0)% @11#.

III. THE CONSERVED O„n… MODEL

The dynamics of a system described by a conserved
tor order parameter are modeled by the Cahn-Hilliard eq
tion @10#,

]f i

]t
5“•Fl~fW 2!“S dF@fW #

df i
D G

5“•Fl~fW 2!“S 2“

2f i1
]V~fW 2!

]f i
D G , ~27!

where we make the same choice for the potential as bef
V(fW 2)5 1

4 (12fW 2)2. Following the method of the previou
calculation,fW 2 is eliminated using Eq.~3!; therefore, Eq.
~27! reduces to

]f i

]t
52aa~ t !@“4f i1a~ t !“2f i #, ~28!

wherea(t) is defined as before. Taking the Fourier transfo
and solving the resulting differential equation yields

fk
~ i !~ t !5fk

~ i !~0!exp@2k4b~ t !1k2c~ t !#, ~29!

where b(t) and c(t) are defined as for the nonconserv
case. Substituting this back into the formula fora(t) and
using the random initial conditions given by Eq.~7! gives

a~ t !512D(
k

exp@22k4b~ t !12k2c~ t !#. ~30!

To make further progress we again assume that at la
t, a(t)!1. This is checked for self-consistency later in t
calculation. The sum overk is converted to an integral and
using the change of variables
,

n

c-
a-

re,

ge

x5S b~ t !

c~ t ! D
1/2

k, ~31!

Eq. ~30! becomes

D

2d21pd/2G~d/2! S b~ t !

b~ t ! D
d/4

3E
0

`

dx xd21exp@2b~ t !~x22x4!#51, ~32!

where

b~ t !5c2~ t !/b~ t !. ~33!

We now make an additional assumption~also to be veri-
fied a posteriori! that b(t)→` as t→`; the integral on the
left-hand side of Eq.~32! can then be evaluated by th
method of steepest descents. Therefore, Eq.~32! finally sim-
plifies to

Db~ t !21/2

23d/2p~d21!/2G~d/2!
S b~ t !

b~ t ! D
d/4

exp@b~ t !/2#51. ~34!

We now solve this equation asymptotically, obtaining e
pressions fora(t), b(t), andb(t) at late times. On taking
the logarithm of Eq.~34!, we find that

b~ t !.
d

2
ln b~ t !1S 22d

2 D ln@ ln b~ t !#. ~35!

Using the definition ofb(t) @Eq. ~33!# in Eq. ~35!, we obtain
an equation forc(t), which when differentiated, gives~to
leading order!

ċ~ t !.S d ln b~ t !

8b~ t ! D 1/2

ḃ~ t !. ~36!

If we now substitute for the derivatives ofb(t) and c(t)
from Eqs.~11! and ~12!, respectively, we find that

aa~ t !5ḃ~ t !5S d ln b~ t !

8b~ t ! D a/2

, ~37!

which has the asymptotic solution

b~ t !.S ~21a!t

2 D 2/~21a!S d ln t

4~21a! D
a/~21a!

. ~38!

If we now differentiate this expression once more, w
obtain the asymptotic behavior ofa(t),

a~ t !.S d ln t

2~21a!2t D
1/~21a!S 11

1

2 ln t D , ~39!

and clearlya(t)!1 at late times, justifying one of our initia
assumptions.

On substituting Eq.~38! into Eq. ~35!, we obtain

b~ t !.
d

21a
ln t1S 21a2d

21a D ln~ ln t !. ~40!
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We see that ast→`, b(t)→`, justifying the application of
the method of steepest descents to the integral in Eq.~32!.
Thus both our initial assumptions are satisfied.

We are now in a position to evaluate the expression
fk

( i )(t). Completing the square in the exponent on the rig
hand side of Eq.~29! gives

fk
~ i !~ t !5fk

~ i !~0!expH b~ t !

4
2

b~ t !

4 F122S b~ t !

b~ t ! D
1/2

k2G2J .

~41!

Substituting forb(t) and b(t), from Eqs. ~38! and ~40!,
respectively, gives

fk
~ i !~ t !.fk

~ i !~0!~ ln t !~21a2d!/4~21a!t @d/4~21a!#f~k/km!,
~42!

where

km5S d ln t

2~21a!2t D
1/2~21a!

~43!

is the position of the maximum in the structure factor, a
f(x)512(12x2)2.

The structure factor is, therefore, given by

S~k,t !.D~ ln t !~21a2d!/2~21a!t @d/2~21a!#f~k/km!. ~44!

From this expression it is self-evident that the structure f
tor does not have the conventional scaling formS(k,t)
;Ldg(kL). In this system there are two different leng
scalesL1 andL2 , which differ only by a logarithmic factor
and are given by

L1;t1/2~21a!, ~45!

L2;km
215S t

ln t D
1/2~21a!

. ~46!

The structure factor is, therefore, of the formS(k,t)
;L1

df(kL2) with an additional logarithmic correction facto
(ln t)(21a2d)/2(21a), the exponent depends continuously on
scaling variable. This type of behavior is called ‘‘multisca
ing,’’ and was first noted by Coniglio and Zannetti for th
casea50 @1#. Note that thea dependence enters through t
length scalesL1 andL2 , while the functionf(x) is indepen-
dent ofa.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have considered the effect of an ord
parameter-dependent mobility/kinetic coefficient, given
l(fW )5(12fW 2)a, on a system described by ann-component
r
t-

d

-

r-
y

vector order parameter. Exact results have been obtaine
the large-n limit, a limit that despite its limited applicability
to physical systems has been widely studied as one of
few exactly soluble models of phase-ordering kinet
@1–3,13–16#. All the results obtained reduce to the expect
constantl results whena is set to zero.

In the nonconserved system, the correlation function a
its Fourier transform, the structure factor, were explicitly c
culated and found to be of the expected scaling form, w
the characteristic length growing asL;t1/2(11a). The order-
parameter-dependent kinetic coefficient slows down the
of domain coarsening; the result reduces to the familiart1/2

growth for the casea50 @10,13#. The resultl̄5d/2, inde-
pendent ofa, was established from the two-time correlatio
function C(r ,t1 ,t2) in the regimet1@t2 , and the relation
S(k,t,0)5DG(k,t), relating the correlation with, and the re
sponse to, the initial condition was verified. The equal-tim
correlation functions and structure factor are Gaussian.

The system with a conserved order parameter was fo
to exhibit a more unusual behavior. In this system, the str
ture factor does not have the conventional scaling form
is dependent ontwo scaling lengths,t1/2(21a) and km

21

;(t/ ln t)1/2(21a), wherekm is the position of the maximum
in the structure factor. This type of behavior was first disco
ered in a phase-ordering system by Coniglio and Zann
@1#, for the a50 case. Fora50 this behavior is a conse
quence of the noncommutativity of the large-n and large-t
limits, as demonstrated within a soluble approximate mo
by Bray and Humayun@14#. They demonstrated that for fi
nite n, in the limit t→`, conventional scaling is found
whereas if then→` limit is taken first ~at finite t!, the
Coniglio and Zannetti result@1# is recovered. At large, bu
finite n, multiscaling behavior is found at intermediate time
with a crossover to simple scaling behavior occurring at l
times @14,17,18#. We anticipate that a similar crossover
simple scaling at late times will occur for anya for large but
finite n, leaving a single growing length scaleL;t1/2(21a),
but an explicit demonstration of this goes beyond the sc
of the present paper.

Note that all the results presented above have been
rived in the absence of thermal noise, so these results
strictly valid only for quenches toT50. However, since we
do not expect temperature to be a relevant variable@10,12#,
qualitatively similar results should be obtained for quench
to T.0 ~but T,Tc!, at least for nonconserved dynamic
~with n finite or infinite! or conserved dynamics with finiten
@18#.
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